
JOURNAL OF COMPUTATIONAL PHYSICS 69, 471481 (1987)

The Solution of Large Dense Generalized Eigenvalue Problems
on the Cray X-MP/24 with SSD*

HENRY KRAKAUER

Deparrmmt of‘ Physics, The College of William and Mary.

Williamshur~. Virginia 23185

JOHN LEWIS AND HORST SIMON

Boeitzg Compurcr Scwiws, MIS 7L-21, Engineering Tecknolog~~ Applkurions L)i[~i.tron,

P.O. Bo\- 24346, &u/tk. Washing/on 98 124

AND

SU-HAI WEI’

Depurtmmi of Ph~~.sics, The C‘oliege of Willictm cmd Mar,,,

Willicmmshurg. Viyiniu 231X.5

Received: January 3, 1986; revised: May 9. 1986

Quantum mechanical bandstructure calculations often require the numerical solution of
large, full generalized eigenvalue problems. The eigenvalue problems are definite and often
symmetric, and in most cases only a few eigenvalues and eigenvectors are required. However,
with a problem size ranging between 1000 and 2000 an in-core solution of these problems is
still memory-limited on most of today’s supercomputers. Here we investigate the use of the
Lanczos algorithm for this type of eigenvalue problem. Numerical results demonstrate some of
the advantages of the Lanczos algorithm. The Lanczos approach is generally faster and allows
an out-of-core implementation for extremely large problems. (’ 1987 Academic Press. Inc

1. INTRODUCTION

Quantum mechanical bandstructure calculations often require the numerical
solution of large, full, generalized eigenvalue problems. The eigenvalue problems are
definite and in many cases also symmetric of the form

A.x = i.B.x. (1)

* This work is supported in part by NSF Grant DMR-84-16046 and a supercomputer grant of the
Oftice of Advanced S&ntific Computing at the NSF.

’ Present address: Solar Energy Research Institute, Golden, Colorado 80401.

471
0021-9991187 $3.00

C‘opyrtgh! < 1987 by Acadermc Pre\s. Inc
All rtghts ol rrproduct~on m any form rrxrrrd

472 GRIMES ET AI,.

Here A and B are real, symmetric n by n matrices and B is positive definite. The
definiteness of B assures that the spectrum is real.

These eigenvalue problems are encountered after applying a RayleighhRitz
variational method (see, e.g., [S]) to solve the Schrodinger differential equations
for the quantum mechanical wave function. For example, in [14] Wei and
Krakauer report theoretical calculations of the pressure and volume at
metallization of BaTe using such an approach. These calculations accurately
reproduce recent experimental measurements of this transition 16, 71. These
calculations represent the first convincing demonstration of the ability of this type
of calculations to predict band overlap metallization. The variational approach to
obtaining the wave function is standard in quantum chemistry and solid state
physics.

The efficient numerical solution of (1) is therefore of great interest to the com-
munity of computational physicists and chemists. In this report we discuss both the
application of the Lanczos algorithm and a combination of the Householder reduc-
tion and bisection algorithm for (1). A discussion of both solution approaches as
well as further references are given by Parlett [9]. A vectorized implementation of
the Lanczos algorithm on the Cyber 205 and its application to large, sparse eigen-
value problems in structural engineering has been discussed by Parlett, Nour-Omid,
and Natvig [lo].

2. PROPERTIES OF THE EIGENVALUE PROBLEM

One main characteristic of the eigenvalue problem (1) is that typically only about
10% of the eigenvalues and corresponding eigenvectors are wanted. The desired
eigenvalues are at the lower end of the spectrum. All negative eigenvalues and a few
positive ones are needed for further calculations. Even though the number of
required eigenvalues remains relatively constant, the problem size does not. There
are some a priori rules of thumb dictating how many basis functions should be used
in the Rayleigh-Ritz method, but the problem size may have to be increased for a
given simulation. For the purpose of the discussion in this report, we assume a
problem size of around 1000, which is fairly typical. Our largest numerical result is
for n = 1496, and it is not unreasonable to consider calculations in the near future
which would lead to problems of order 2000 to 3000.

Computing some eigenvalues of a 1000 by 1000 matrix is definitely a supercom-
puter problem, in particular in the context considered here, where one simulation
run may require the solution of several hundred of these eigenvalue problems. The
EISPACK 2 manual [4] gives as a benchmark for the solution of an 80 by 80
eigenvalue problem on the IBM 370/195 an execution time of 1.16 s. Based on this
benchmark, and using the formulas given in [4] we estimate an execution time of
about 18 min for our 1000 by 1000 matrix. Solving 200 such problems in a single
calculation would require about 60 h. The results in this report show that the same
computation can be carried out on a Cray X-MP in about 1 h. Hence an unfeasible

LARGEDENSEEIGENVALUE PROBLEMS 473

TABLE I

Approximately Largest Feasible Problem Size
for In-Core Solution Using EISPACK Routines

Machine Memory size RSG BISECT-path

Cray-1S 2 Mword 153 912
Cray X-M P/24 4 Mword 1110 1350

computational problem has been turned into a production type problem, which can
be solved easily in an overnight run.

These large dense eigenvalue problems are, however, memory limited even on
supercomputers such as the CRAY X-MP. The standard EISPACK driver RSG for
the symmetric generalized eigenvalue problem requires about 3~2’ memory locations
for the computation of the complete spectrum. Combining some special EISPACK
routines it is possible to compute only the p eigenvalues and eigenvectors of
interest. For this EISPACK path, using the subroutine BISECT for finding the
eigenvalues of the tridiagonal matrix, and TINVIT for computing eigenvectors by
inverse iteration, the storage requirements are 2n’+ pn words. Neither of the two
solution algorithms, however, can compute an in-core solution for the largest
problems of interest. The largest problems solvable by the two approaches are given
in Table 1.

Since we were interested in solving problems up to n = 2000, some alternative
options had to be investigated. The following approaches appeared to be feasible.

(1) The use of packed symmetric storage would reduce storage requirements
by about one half. This approach is discussed in Section 3.

(2) The use of the Lanczos algorithm would reduce the storage requirements
by about the same amount. In addition the Lanczos algorithm allows for an easy
out-of-core solution of the eigenvalue problem, with the potential of using the solid-
state-storage device on the CRAY X-MP. This approach is discussed in Section 4.

(3) A last option would be to develop an out-of-core version of the
Householder reduction to tridiagonal form, and use it in connection with other out-
of-core routines to develop an out-of-core version of EISPACK. This option is
currently being investigated by some of the authors. Some remarks on an out-of-
core EISPACK, and conclusions from our numerical results are given in Section 5.

3. PACKED SYMMETRIC STORAGE

Packed symmetric storage refers to a mode of storing the rows of the lower
triangular part of the matrix one after the other in a one-dimensional array of
length n(n + 1)/2. This is equivalent to storing the columns of the upper triangular

474 GRIMES ET AL.

part in the same fashion. The total storage requirement for computing p eigenvalues
and vectors is then approximately n’ + pn. For p = 30 the largest feasible problem
on the Cray 1-S is about of order 1304, and on the Cray X-MP/24 of order 1923.
Hence packed symmetric storage allows us to perform the calculations we are
currently interested in.

Unfortunately not all required subroutines for the generalized eigenvalue
problem are implemented in EISPACK using packed symmetric storage. EISPACK
only provides routines for the symmetric packed problem, but no subroutines
which would reduce a generalized problem in packed form to a simple eigenvalue
problem in packed form. In order to work only with packed matrices throughout
the solution process, it was necessary to utilize some subroutines from LINPACK
and to perform some additional coding.

The first step in solving (1) is a Choleski factorization of the positive definite
matrix B,

B= LL’. (2)

Here we use the packed factorization subroutine SPPFA from LINPACK [2].
SPPFA computes the Choleski factor L and overwrites B. A vectorized version of
SPPFA has been used here.

The next step is the formation of the matrix 2,

d=L-‘ALp7. (3)

This operation is not implemented in EISPACK. In our current program it has
been newly implemented so that the lower triangle of A’ overwrites the lower
triangle of A. All operations can also be arranged so that the Cray Fortran com-
piler CFT vectorizes the inner loops. Because of the packed storage scheme this is
not completely trivial.

The matrix A’ is then reduced to tridiagonal form T using the subroutine TRED3
from EISPACK. TRED3 is a version of the Householder reduction to tridiagonal
form, where the coefficient matrix is given in symmetric packed form. Because of
better vectorization on the Cray X-MP, the version of TRED3 from the latest
EISPACK release [3] was chosen.

TABLE II

Execution Times for Packed EISPACK Routines

Order Execution time (s)

219 1.370
667 14.729
992 37.330

1496 108.543

LARGE DENSE EIGENVALUE PROBLEMS

20

/- O--

475

FIG. 1. Execution times for packed EISPACK routines.

The subroutine BISECT from EISPACK is used to compute all the eigenvalues
of T in a given interval. Then TINVIT, TRBAK3, and a triangular solve with L’
must be applied to compute the corresponding eigenvectors of the T, transform
them back to eigenvectors of A”, and finally transform them to eigenvectors of (1).
Operations in BISECT and TINVIT are essentially scalar and do not vectorize.
These operations, however, only account for a small fraction of the total com-
putational work. All eigenvector transformations vectorize well.

As an example for the computational performance of the packed EISPACK
routines we consider a sequence of problems arising in surface calculations for
tungsten. The same model was solved using an increasing number of basis
functions. In all cases the computation of all eigenvalues in the interval
[- 1.0, 0.301 was requested. All numerical tests were performed on the Boeing
Computer Sevices Cray X-MP/24 using CFT 1.11. The execution times are given in
Table II (see also Fig. 1).

4. LANCZ~S ALGORITHM

In recent years the Lanczos algorithm has become the method of choice for large
sparse generalized eigenvalue problems arising in structural engineering (dynamic
analysis). A block shifted Lanczos algorithm for dynamic analysis problems has
been<recently implemented by Grimes, Lewis, and Simon [S]. The report [S] dis-
cusses the details of the implementation of this algorithm. For a discussion of the
basic issues involving the practical use of the Lanczos algorithm for eigenvalue
computations see [9]. The vectorization of the Lanczos algorithm and its perfor-
mance on vector computers is discussed in [lo].

Here we will only discuss some aspects of the block-shifted Lanczos algorihm, as

476 GRIMES ET AL.

they are relevant for the understanding of the numerical results. The simple, unshif-
ted Lanczos algorithm for the symmetric eigenvalue problem is related to the
Householder reduction to tridiagonal form in the sense that it will also produce a
tridiagonal matrix, which is similar to the original matrix. The main difference is,
however, that the Lanczos algorithm can be terminated early, and nevertheless the
truncated tridiagonal matrix will contain eigenvalue approximations to some of the
eigenvalues of the original matrix. A second difference is that the Lanczos algorithm
does not modify the original matrix directly. The only information needed is the
computation of a matrix vector product for a given vector. This is quite easily
accomplished, whether the matrices involved are sparse or dense, or whether they
are stored in-core or out-of-core.

The basic Lanczos algorithm must be modified in several ways to handle
generalized eigenvalue problems of the form (1). One modification is to switch to a
block Lanczos algorithm. A block Lanczos algorithm operates on several vectors at
the same time, and reduces the original matrix to block tridiagonal form. Even
though convergence becomes slower for larger bocksizes, a block algorithm can
become overall more efficient in terms of execution time, since the total number of
accesses to the matrix and hence the number of I/O operations is reduced. A second
reason for choosing a block algorithm is its better performance for multiple eigen-
values.

Another modification is the use of a shifted Lanczos algorithm. The shifted
Lanczos algorithm is related to inverse iteration in the sense that it converges most
rapidly to eigenvalues which are close to the chosen shift value. Unlike inverse
iteration, which only computes one eigenvalue and vector at a time, the Lanczos
algorithm will compute approximations to many eigenvalues near the shift. The
shifted Lanczos algorithm, however, requires a factorization of the original matrix
initially, and forward solve and back substitution operation with the factored
matrix at each step instead of the matrix multiply. If the matrix is stored out-of-
core, obviously corresponding out-of-core routines must be used.

The implementation of the block-shifted Lanczos algorithm [S] also employs an
automatic shifting strategy. Based on a heuristic, user specified intervals are
searched for eigenvalues by judiciously placing shifts. The use of inertia counts (see
[9, 51) assures that no eigenvalues will be missed.

The block-shifted Lanczos algorithm [S] has been developed originally for
sparse problems arising in structural engineering applications. However, its
modular structure made it easy to make the necessary modifications for a dense
problem. All interaction between the coefficient matrices A and B and the code took
place in only three subroutines. For these subroutines the corresponding LIN-
PACK [2] subroutines for packed symmetric matrices were substituted. This
involved subroutines for the symmetric packed factorization with inertia count
(SSPCO) and the corresponding solve routine SSPSL. These routines had been
vectorized previously. Since the LINPACK routines are in-core subroutines the
total storage for the Lanczos algorithm was thus about the same as for the
EISPACK implementation discussed above.

LARGE DENSE EIGENVALUE PROBLEMS 477

One advantage of the Lanczos algorithm is that potentially an out-of-core ver-
sion is much easier to produce. It will only require out-of-core versions of the above
LINPACK routines. Contrary to the situation with the Householder reduction, it is
well understood how to solve Iinear systems out-of-core [131, and a complete out-
of-core version of the Lanczos code can be developed easily.

A second advantage of the Lanczos algorithm is that the majority of operations
involve long vectors of size n. The algorithm thus vectorizes quite naturally. This
has been discussed previously in [lo].

The current version of the Lanczos code keeps the coefficient matrices A and B in
core. Only certain intermediate quantities produced by the Lanczos code are stored
out-of-core. The Boeing Cray X-MP allows storing these internal files on the solid-
state storage device (SSD). The SSD is a very fast secondary storage system, which

./ boF-~-m.d-.-.y--.-..- ._- -. -~

Mock Sdre Block S>ze

FIG. 2. Execution times for Lanczos code with SSD, tungsten surface, CP time: (a) order 219;
(b) order 667; (c) order 992; (d) order 1496.

478 GRIMES ET AL.

120

100

% 80
s
Y
"
u 60
E
t

=i
40

20

0

ProblemS,ze

FIG. 3. Execution times for Lanczos code with SSD (optimal block sizes from results in Fig. 2).

when used optimally can sustain transfer rates only moderately slower than access
to fast in-core memory [11.

In an initial test of the block-shifted Lanczos algorithm the four tungsten surface
calculation problems were solved, with varying blocksize, and by storing inter-
mediate quantities both on the SSD and on regular disks. The execution time with
or without SSD did not vary significantly in most of the cases. Where they did dif-
fer, this could be attributed to the fact that a minor variation in the execution time
caused the shift heuristic to make some different decisions. This insignificant dif-
ference can be explained with the fact that the amount of data transfered to and
from the SSD in a single I/O request is comparatively small. The fast asymptotic
transfer rate of the SSD does not come into play. We report here only the results
with SSD.

A first version of the algorithm was required to compute the 30 smallest eigen-
values. The results of the first set of tests are summarized in Fig. 2. Several con-
clusions can be drawn from these results. First, blocksize three appears to be the

TABLE III

Execution Times for Block Shifted Lanczos

Order Execution time (s)

219 1.48
661 6.49
992 14.62

1496 34.66

LARGEDENSEEIGENVALUEPROBLEMS 479

0 400 800 1200 1600

Problem SIX

FIG. 4. Execution times for Lanczos code

optimal choice for these dense problems. If the optimal execution times (see Fig. 3)
are compared with the previous EISPACK results, they are slower by up to a factor
of two. This is again due to the shifting strategy. This first implementation of the
shifting heuristic is very conservative and employs more shifts and hence fac-
torizations to ascertain that no eigenvalues have been missed. The Lanczos code
actually solves a more difficult problem than the EISPACK code since it has no a
priori information on the location of the eigenvalues.

Because of some inefficiencies the shifting strategy has been reformulated in a
second version of the Lanczos code. This new version of the code requires for each
problem only two or three factorizations and the results obtained (for blocksize
three) are listed in Table III. The execution times are summarized in Fig. 4. Note
that the Lanczos algorithm needs no priori knowledge of the interval.

5. CONCLUSIONS

In summary the performance of the optimal Lanczos code is considerably better
than the EISPACK routines (see Fig. 5). However, there is a considerable perfor-
mance variation within the Lanczos code depending on the choice of computational
task and parameters. Besides a good performance of the Lanczos algorithm depends
also on a good implementation of the shifting heuristic. Nevertheless the Lanczos
algorithm appears to be the method of choice for the computation of some eigen-
values and vectors of large dense problems, especially when considering the fact
that a full out-of-core version can be developed fairly easily. This conclusion con-
firms some theoretical results by Paige [111, who estimated that the Lanczos

480 GRIMES ET AL.

120,

1. ~ancrox Opt Btock Sire

. EISPACK

20 -

01
0

/’
., -. /n

/ ,I,’
^ ‘,, A,’

J.--;-;-:;‘” -
_ 17- .-

- --~ .‘- OptImaI iancorr

400 800

Problem Sire

1200 1600

Fw. 5. Summary of execution times (overlay of Figs. 1, 3, and 4).

algorithm would be more effkient than Householder reduction and bisection, if less
than a fourth of all the eigenvalues are required.

Will the whole question of out-of-core solutions for eigenvalue problems still be
an issue when the next generation of supercomputers such as the CRAY 2 are con-
sidered? These machines provide a very large fast memory (up to 256 Mwords on
the CRAY 2) and the calculations discussed in this report could be performed
easily. The experience of the last decade has, however, shown that scientific
problems under investigation grow at about the same rate as the computational
power of supercomputers. Hence we believe that the solution of large dense eigen-
value problems in a memory limited environment will remain an interesting
research question in scientific computing.

REFERENCES

1. CRAY RESEARCH, INC., “Solid-state Storage Device Reference Manual,” Publication HR-0032, 1984.
2. J. J. DONC;ARRA, C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK User’s Guide (Sot.

Indus. Appl. Math., Philadelphia, 1979).
3. J. J. DONGARRA AND C. 9. MOLER, Report ANL/MCS-TM-12, Argonne Natlonal Laboratory, 1983

(unpublished).
4. B. S. GARBOW et al., Matri.u Eigensystem Routines---EISPACK Guide Extension, (Lecture Notes in

Comput. Sci. No. 57, Springer-Verlag, Berlin/Heidelberg/New York, 1977).
5. R. GRIMES, J. LEWIS, AND H. SIMON, Report ETA-TR-39, Boeing Computer Services, 1986

(unpublished).
6. T. A. GRZYBOWSKI AND A. L. RUOFF, Phys. Rec. B 21, 6502 (1983).
7. T. A. GRZYBOWSKI AND A. L. RUOFF, Php. Rev. Lert. 53, 489 (1984).
8. J. K. L. MACDONALD, Phys. Rev. 43, 830 (1933).
9. B. PARLETT. The Syn?metric Eigenuulue Problem (Prentice-Hall, Englewood Cliffs, N.J.. 1980).

LARGE DENSE EIGENVALUE PROBLEMS 481

IO. B. PARLETT, B. NOUR-OMID, AND J. NAYVIG, in Supercomputer Applications, edited by R. W.
Numrich (Plenum, New York, 1985).

Il. C. C. PAIGE, Thesis, Univ. of London, 1971 (unpublished),
12. B. T. SMITH et al., Matrix Eigensystem Roufines-EISPACK Guide (Lecture Notes in Comput. Sci

No. 6, Springer-Verlag, Berlin/Heidelberg/New York, 1974).
13. “VectorPak Users Manual,” Boeing Computer Services Document No. 20460-0501. 1985.
14. S. H. WEI AND H. KRAKAUER, Phys. Rev. Left 55, 1200 (1985).

581’69/2-15

